Animated CTA Banner
MapYourTech
MapYourTech has always been about YOUR tech journey, YOUR questions, YOUR thoughts, and most importantly, YOUR growth. It’s a space where we "Map YOUR Tech" experiences and empower YOUR ambitions.
To further enhance YOUR experience, we are working on delivering a professional, fully customized platform tailored to YOUR needs and expectations.
Thank you for the love and support over the years. It has always motivated us to write more, share practical industry insights, and bring content that empowers and inspires YOU to excel in YOUR career.
We truly believe in our tagline:
“Share, explore, and inspire with the tech inside YOU!”
Let us know what YOU would like to see next! Share YOUR thoughts and help us deliver content that matters most to YOU.
Share YOUR Feedback
Interviews

What is DWDM and how it works?

Pinterest LinkedIn Tumblr

 

Dense Wavelength division multiplexing (DWDM) is a technology used to combine or retrieve two or more optical signals of different optical center wavelengths or frequencies in a fiber. This allows fiber capacity to be expanded in the frequency domain from one channel to greater than 100 channels. This is accomplished by first converting standard, non-DWDM optical signals to signals with unique WDM wavelengths or frequencies that will correspond to the available channel center wavelengths in the WDM multiplexer and demultiplexer. Typically, this is done by replacing non-WDM transceivers with the proper WDM channel transceivers. WDM channels are defined and labeled by their center wavelength or frequency and channel spacing. The WDM channel assignment process is an industry standard defined in International Telecommunications Union (ITU-T). Then different WDM signal wavelengths are combined over one fiber by the WDM multiplexer. In the fiber, the individual signals propagate with minimal interaction assuming low signal power. For high powers, multiple interactions can occur. Once the signals reach the fiber link end, the WDM demultiplexer separates the signals by their wavelengths, back to individual fibers that are connected to their respective equipment receivers. Optical receivers have a broad reception spectrum, which includes all of C band. Many receivers can also receive signals with wavelengths down to O band.

 

 

Author

Share and Explore the Tech Inside You!!!

Write A Comment