LOGIN NOW to access Courses, Articles, Tools, Simulators, Research Reports, Infographics & Books – Everything you need to excel and succeed! ★ Follow us on LINKEDIN for exclusive updates & industry insights LOGIN NOW to access Courses, Articles, Tools, Simulators, Research Reports, Infographics & Books – Everything you need to excel and succeed! ★ Follow us on LINKEDIN for exclusive updates & industry insights LOGIN NOW to access Courses, Articles, Tools, Simulators, Research Reports, Infographics & Books – Everything you need to excel and succeed! ★ Follow us on LINKEDIN for exclusive updates & industry insights LOGIN NOW to access Courses, Articles, Tools, Simulators, Research Reports, Infographics & Books – Everything you need to excel and succeed! ★ Follow us on LINKEDIN for exclusive updates & industry insights
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Articles
lp_course
lp_lesson
Back
HomeFreeTemperature dependency of EDFA Gain for various channels

Temperature dependency of EDFA Gain for various channels

Last Updated: August 16, 2025
2 min read

Here the results are after evaluating the effect of a thermal variation on the output tilt. In this particular set-up the amplifier is kept at room temperature (25 °C) and only the active fiber spool undergo a thermal cycle. Temperature of the EDFA is varied from 0 °C to 65 °C and the amplifier gain is measured at four point : 0, 25, 40 and 65 °C.

 

As can be seen a 65 °C temperature variation implies a 1.8 dB tilt variation. Considering a reduced temperature range (5-45 °C) the output tilt variation is about 1.1 dB.

It was  tried to investigate the origin of the temperature dependency. First  used a different EDFA with a lower erbium concentration (14 dB/m erbium peak absorption); then tried to reduce the saturation of the EDFA using lower power levels, but in both cases the output tilt variation was very similar to that of Figure .

Temperature variation has also effect on the EDFA efficiency: with high temperature the active fiber is less efficient than at low temperature.

With constant pumps power, a 65°C variation implies a 0.25 dB difference on the output power. To compensate this extra tilt we can act in two way: using the VOA ; heating the EDFA to a constant 65 °C.

First solution requires a thermal sensor to measure the EDFA temperature and a compensation table (stored in the firmware) to act on VOA attenuation.

Second solution requires a heater and special mechanics & software to store the EDFA spool and to keep their temperature constant.

Unlock Premium Content

Join over 400K+ optical network professionals worldwide. Access premium courses, advanced engineering tools, and exclusive industry insights.

Premium Courses
Professional Tools
Expert Community

Already have an account? Log in here

Share:

Leave A Reply

You May Also Like

Last Updated: November 10, 2025 28 min read EDFA (Erbium Doped Fiber Amplifier): Everything You Need to Know EDFA: Erbium...
  • Free
  • November 9, 2025
21 min read Advanced Deep Dive: Raman Amplifier – Everything About It Advanced Deep Dive: Raman Amplifiers Comprehensive Expert-Level Analysis...
  • Free
  • November 9, 2025
51 min read EDFA (Erbium Doped Fiber Amplifier): Complete Technical Guide – Part 1 EDFA: Erbium Doped Fiber Amplifier A...
  • Free
  • November 9, 2025

Course Title

Course description and key highlights

Course Content

Course Details